翻訳と辞書
Words near each other
・ Bell-Bottom George
・ Bell-bottoms
・ Bell-boy hat
・ Bell-boy jacket
・ Bell-cot
・ Bell-gable
・ Bell-Jeff Invitational
・ Bell-lloc d'Urgell
・ Bell-mae Station
・ Bell-Mark
・ Bell-Northern Research
・ Bell-Pat railway station
・ Bell-ringer
・ Bell Seagull and Seamew
・ Bell Sensplex
Bell series
・ Bell Shakespeare
・ Bell Shrine of St. Cuileáin
・ Bell Sidewinder
・ Bell sleeve
・ Bell Smith Springs
・ Bell Sports
・ Bell Sports Complex
・ Bell Springs Community
・ Bell Springs Formation
・ Bell Springs, California
・ Bell Square
・ Bell stalked jelly
・ Bell state
・ Bell Station


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Bell series : ウィキペディア英語版
Bell series
In mathematics, the Bell series is a formal power series used to study properties of arithmetical functions. Bell series were introduced and developed by Eric Temple Bell.
Given an arithmetic function f and a prime p, define the formal power series f_p(x), called the Bell series of f modulo p as:
:f_p(x)=\sum_^\infty f(p^n)x^n.
Two multiplicative functions can be shown to be identical if all of their Bell series are equal; this is sometimes called the ''uniqueness theorem'': given multiplicative functions f and g, one has f=g if and only if:
:f_p(x)=g_p(x) for all primes p.
Two series may be multiplied (sometimes called the ''multiplication theorem''): For any two arithmetic functions f and g, let h=f
*g be their Dirichlet convolution. Then for every prime p, one has:
:h_p(x)=f_p(x) g_p(x).\,
In particular, this makes it trivial to find the Bell series of a Dirichlet inverse.
If f is completely multiplicative, then formally:
:f_p(x)=\frac.
==Examples==

The following is a table of the Bell series of well-known arithmetic functions.
* The Möbius function \mu has \mu_p(x)=1-x.
* Euler's Totient \varphi has \varphi_p(x)=\frac.
* The multiplicative identity of the Dirichlet convolution \delta has \delta_p(x)=1.
* The Liouville function \lambda has \lambda_p(x)=\frac.
* The power function Idk has (\textrm_k)_p(x)=\frac. Here, Idk is the completely multiplicative function \operatorname_k(n)=n^k.
* The divisor function \sigma_k has (\sigma_k)_p(x)=\frac.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Bell series」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.